Week 6 - Wednesday

COMP 2100

Last time

- What did we talk about last time?
- More recursion
- Merge sort

Questions?

Assignment 3

Recursion

Project 2

Infix to Postfix Converter

Symbol Tables

Symbol tables

- A symbol table goes by many names:
 - Map
 - Lookup table
 - Dictionary
- The idea is a table that has a two columns, a key and a value
- You can store, lookup, and change the value based on the key

Example

 A symbol table can be applied to almost anything:

Key	Value
Spiderman	Climbing and webs
Wolverine	Super healing
Professor X	Telepathy
Human Torch	Flames and flying
Deadpool	Super healing
Mr. Fantastic	Stretchiness

- The key doesn't have to be a String
- But it must be unique

Key	Value
1500	Introduction to Computer Science
1600	Introduction to Programming
2000	Object-Oriented Design
2100	Data Structures
3100	Software Engineering

Symbol table ADT

- We can define a symbol table ADT with a few essential operations:
 - put(Key key, Value value)
 - Put the key-value pair into the table
 - get(Key key):
 - Retrieve the value associated with key
 - delete(Key key)
 - Remove the value associated with key
 - contains(Key key)
 - See if the table contains a key
 - isEmpty()
 - size()
- It's also useful to be able to iterate over all keys

Ordered symbol tables

- The idea of order in a symbol table is reasonable:
 - You want to iterate over all the keys in some natural order
 - Ordering can give certain kinds of data structures (like a binary search tree) a way to organize

Ordered symbol table ADT

- An ordered symbol table ADT adds the following operations to a regular symbol table ADT:
 - Key min()
 - Get the smallest key
 - Key max()
 - Get the biggest key
 - void deleteMin()
 - Remove the smallest key
 - void deleteMax()
 - Remove the largest key
- Other operations might be useful, like finding keys closest in value to a given key or counting the number of keys in a range between two keys

Implementations

- Like other ADTs, a symbol table can be implemented in a number of different ways:
 - Linked list
 - Sorted array
 - Binary search tree
 - Balanced binary search tree
 - Hash table
- Note that a hash table cannot be used to implement an ordered symbol table
 - And it's inefficient to use a linked list for ordered

Sorted array

- We know how to make a sorted array symbol table
- A search is Θ(log n) time, which is great!
- The trouble is that doing an insert takes $\Theta(n)$ time, because we have to move everything in the array around
- A sorted array is a reasonable model for a symbol table where you don't have to add or remove items

Trees

- Trees will allow us to make a sorted symbol table with the following miraculous properties:
 - Θ(log *n*) get
 - Θ(log *n*) put
 - $\Theta(\log n)$ delete
 - $\Theta(\mathbf{n})$ traversal (iterating over everything)
- Unfortunately, only balanced binary search trees will give us this property
- We'll start with binary search trees and build up to balanced ones

Trees

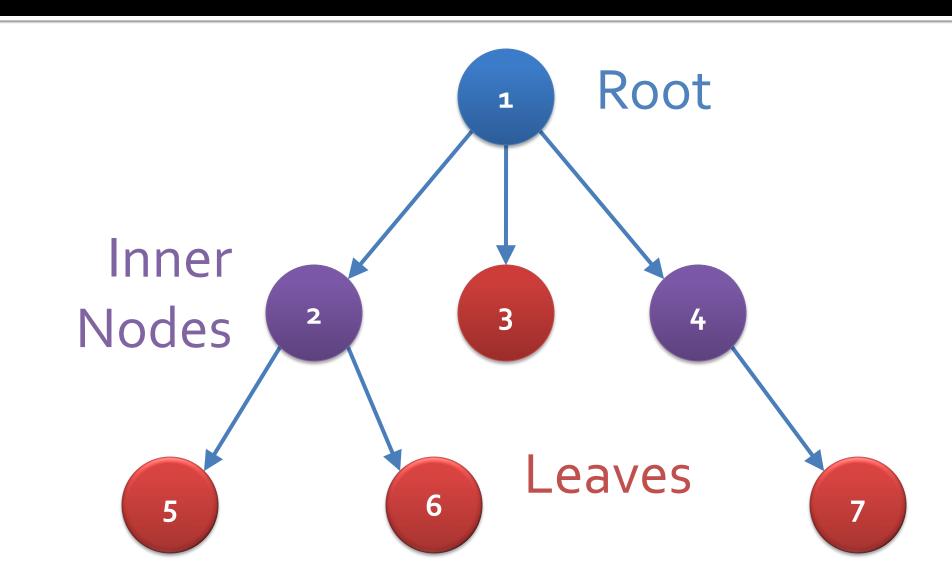
What is a tree?

- A tree is a data structure built out of nodes with children
- A general tree node can have any non-negative number of children
- Every child has exactly one parent node
- There are no loops in a tree
- A tree expressions a hierarchy or a similar relationship

Terminology

- The root is the top of the tree, the node which has no parents
- A leaf of a tree is a node that has no children
- An inner node is a node that does have children
- An edge or a link connects a node to its children
- The depth of a node is the length of the path from the root to the node
 - Note that some definitions add 1 to this definition
- The height of the tree is the greatest depth of any node
- A subtree is a node in a tree and all of its children

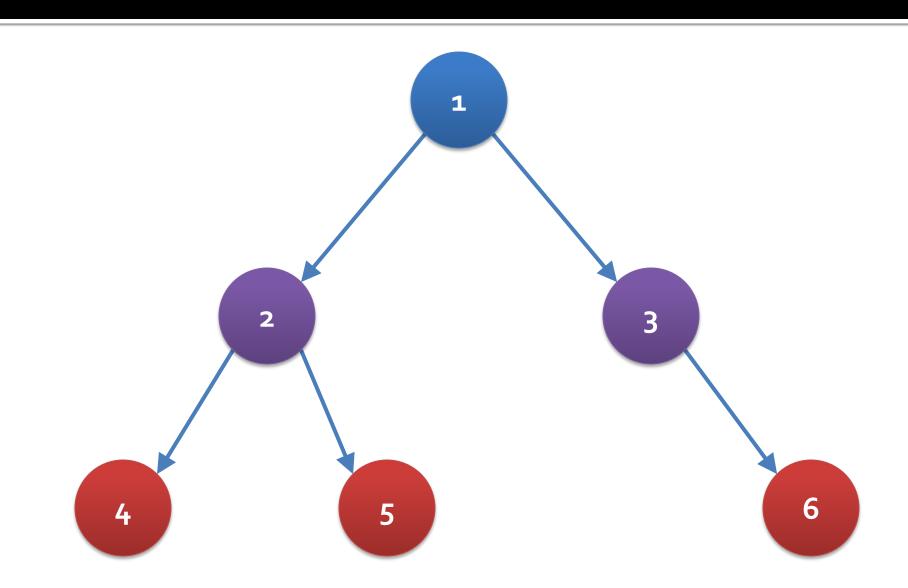
A tree



Binary tree

- A binary tree is a tree such that each node has two or fewer children
- The two children of a node are generally called the left child and the right child, respectively

Binary tree



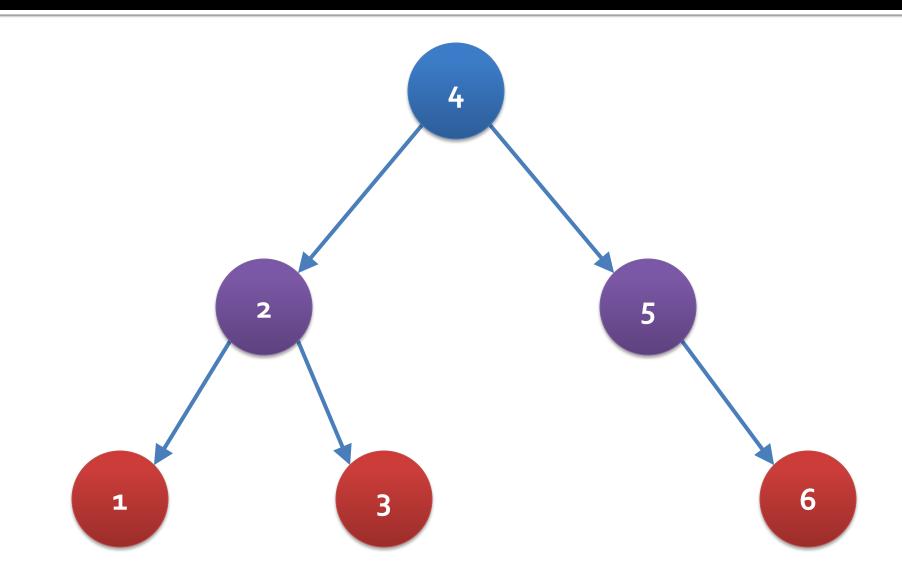
Binary tree terminology

- Full binary tree: every node other than the leaves has two children
- Perfect binary tree: a full binary tree where all leaves are at the same depth
- Complete binary tree: every level, except possibly the last, is completely filled, with all nodes to the left
- Balanced binary tree: the depths of all the leaves differ by at most 1

Binary search tree (BST)

- A binary search tree is binary tree with three properties:
 - The left subtree of the root only contains nodes with keys less than the root's key
 - 2. The right subtree of the root only contains nodes with keys greater than the root's key
 - 3. Both the left and the right subtrees are also binary search trees

BST



BST facts

- Let h be the height of a binary tree
- A perfect binary tree has $2^{h+1}-1$ nodes
- Alternatively, a perfect binary tree has 2L 1 nodes, where L is the number of leaves
- A complete binary tree has between 2^h and $2^{h+1}-1$ (exclusive) nodes
- A binary tree with n nodes has n + 1 null links

BST performance

- Unbalanced BST:
 - Θ(*n*) find
 - $\Theta(\mathbf{n})$ insert
 - **■** Θ(*n*) delete
- Balanced BST:
 - Θ(log *n*) find
 - $\Theta(\log n)$ insert
 - $\Theta(\log n)$ delete

Implementation of a BST

Basic BST class

```
public class Tree {
  private static class Node {
   public int key;
   public Object value;
   public Node left;
   public Node right;
  private Node root = null;
```

The book uses a generic approach, with keys of type **Key** and values of type **Value**. The algorithms we'll use are the same, but I use **int** keys to simplify comparison.

Calling methods on trees

- Almost all the methods we call on trees will be recursive
- Each will take a **Node** reference to the root of the current subtree
- Because the root is private, assume that every recursive method is called by a public, non-recursive proxy method:

```
public Type doSomething() calls
private static Type doSomething( Node root )
```

Finding the smallest key

```
private static int min(Node node)

Proxy:

public int min() {
   return min( root );
}
```

- What's the code?
- Use recursion!

Finding the largest key

```
private static int max(Node node)

Proxy:

public int max() {
   return max( root );
}
```

- What's the code?
- Use recursion!

Getting a value from the key

```
private static Object get(Node node, int key)

• Proxy:

public Object get(int key) {
   return get( root, key );
}
```

- What's the code?
- Use recursion!

Adding a key-value pair

Use recursion!

```
private static Node put (Node node, int key,
 Object value)
Proxy:
 public void put(int key, Object value) {
    root = put( root, key, value );
What's the code?
```

Quiz

Upcoming

Next time...

- Traversals
- Deletion
- Breadth-first search and level-order traversal

Reminders

- Work on Project 2
- Finish Assignment 3
 - Due this Friday
- Keep reading Section 3.2