
Week 6 - Wednesday

 What did we talk about last time?
 More recursion
 Merge sort

Recursion

Infix to Postfix Converter

 A symbol table goes by many names:
 Map
 Lookup table
 Dictionary

 The idea is a table that has a two columns, a key and a value
 You can store, lookup, and change the value based on the key

 A symbol table can be applied
to almost anything:

 The key doesn't have to be a
String

 But it must be unique

Key Value

Spiderman Climbing and webs

Wolverine Super healing

Professor X Telepathy

Human Torch Flames and flying

Deadpool Super healing

Mr. Fantastic Stretchiness

Key Value

1500 Introduction to Computer Science

1600 Introduction to Programming

2000 Object-Oriented Design

2100 Data Structures

3100 Software Engineering

 We can define a symbol table ADT with a few essential operations:
 put(Key key, Value value)

▪ Put the key-value pair into the table
 get(Key key):

▪ Retrieve the value associated with key
 delete(Key key)

▪ Remove the value associated with key
 contains(Key key)

▪ See if the table contains a key
 isEmpty()
 size()

 It's also useful to be able to iterate over all keys

 The idea of order in a symbol table is reasonable:
 You want to iterate over all the keys in some natural order
 Ordering can give certain kinds of data structures (like a binary

search tree) a way to organize

 An ordered symbol table ADT adds the following operations to a regular
symbol table ADT:
 Key min()

▪ Get the smallest key

 Key max()
▪ Get the biggest key

 void deleteMin()
▪ Remove the smallest key

 void deleteMax()
▪ Remove the largest key

 Other operations might be useful, like finding keys closest in value to a
given key or counting the number of keys in a range between two keys

 Like other ADTs, a symbol table can be implemented in a number
of different ways:
 Linked list
 Sorted array
 Binary search tree
 Balanced binary search tree
 Hash table

 Note that a hash table cannot be used to implement an ordered
symbol table
 And it's inefficient to use a linked list for ordered

 We know how to make a sorted array symbol table
 A search is Θ(log n) time, which is great!
 The trouble is that doing an insert takes Θ(n) time, because

we have to move everything in the array around
 A sorted array is a reasonable model for a symbol table where

you don't have to add or remove items

 Trees will allow us to make a sorted symbol table with the
following miraculous properties:
 Θ(log n) get
 Θ(log n) put
 Θ(log n) delete
 Θ(n) traversal (iterating over everything)

 Unfortunately, only balanced binary search trees will give us this
property

 We'll start with binary search trees and build up to balanced ones

 A tree is a data structure built out of nodes with children
 A general tree node can have any non-negative number of

children
 Every child has exactly one parent node
 There are no loops in a tree
 A tree expressions a hierarchy or a similar relationship

 The root is the top of the tree, the node which has no parents
 A leaf of a tree is a node that has no children
 An inner node is a node that does have children
 An edge or a link connects a node to its children
 The depth of a node is the length of the path from the root to

the node
 Note that some definitions add 1 to this definition

 The height of the tree is the greatest depth of any node
 A subtree is a node in a tree and all of its children

1

2 3 4

5 6 7

Root

Inner
Nodes

Leaves

 A binary tree is a tree such that each node has two or fewer
children

 The two children of a node are generally called the left child
and the right child, respectively

1

2 3

4 5 6

 Full binary tree: every node other than the leaves has two
children

 Perfect binary tree: a full binary tree where all leaves are at
the same depth

 Complete binary tree: every level, except possibly the last, is
completely filled, with all nodes to the left

 Balanced binary tree: the depths of all the leaves differ by at
most 1

 A binary search tree is binary tree with three properties:
1. The left subtree of the root only contains nodes with keys less than

the root's key
2. The right subtree of the root only contains nodes with keys greater

than the root's key
3. Both the left and the right subtrees are also binary search trees

4

2 5

1 3 6

 Let h be the height of a binary tree
 A perfect binary tree has 2h+1 – 1 nodes
 Alternatively, a perfect binary tree has 2L – 1 nodes, where L

is the number of leaves
 A complete binary tree has between 2h and 2h+1 – 1 (exclusive)

nodes
 A binary tree with n nodes has n + 1 null links

 Unbalanced BST:
 Θ(n) find
 Θ(n) insert
 Θ(n) delete

 Balanced BST:
 Θ(log n) find
 Θ(log n) insert
 Θ(log n) delete

public class Tree {
private static class Node {
public int key;
public Object value;
public Node left;
public Node right;

}

private Node root = null;

…
}

The book uses a generic approach, with keys of type Key and values of type Value.
The algorithms we'll use are the same, but I use int keys to simplify comparison.

 Almost all the methods we call on trees will be recursive
 Each will take a Node reference to the root of the current

subtree
 Because the root is private, assume that every recursive

method is called by a public, non-recursive proxy method:
public Type doSomething() calls
private static Type doSomething(Node root)

private static int min(Node node)

 Proxy:

public int min() {
return min(root);

}

 What's the code?
 Use recursion!

private static int max(Node node)

 Proxy:

public int max() {
return max(root);

}

 What's the code?
 Use recursion!

private static Object get(Node node, int key)

 Proxy:

public Object get(int key) {
return get(root, key);

}

 What's the code?
 Use recursion!

private static Node put(Node node, int key,
Object value)

 Proxy:

public void put(int key, Object value) {
root = put(root, key, value);

}

 What's the code?
 Use recursion!

 Traversals
 Deletion
 Breadth-first search and level-order traversal

 Work on Project 2
 Finish Assignment 3
 Due this Friday

 Keep reading Section 3.2

	COMP 2100
	Last time
	Questions?
	Assignment 3
	Project 2
	Symbol Tables
	Symbol tables
	Example
	Symbol table ADT
	Ordered symbol tables
	Ordered symbol table ADT
	Implementations
	Sorted array
	Trees
	Trees
	What is a tree?
	Terminology
	A tree
	Binary tree
	Binary tree
	Binary tree terminology
	Binary search tree (BST)
	BST
	BST facts
	BST performance
	Implementation of a BST
	Basic BST class
	Calling methods on trees
	Finding the smallest key
	Finding the largest key
	Getting a value from the key
	Adding a key-value pair
	Quiz
	Upcoming
	Next time…
	Reminders

